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Introduction 
The analytical phase of quantitative Palaeoecology -
Palaeoceanography started in the middle seventies with 
the development of an hypothetical-deductive model which 
seeks to interpret and explain rhythmical patterns on high 
resolution proxy time series as a linear response to a global 
mechanism known as orbital forcing. Directly related to 
the theory proposed in the thirties by the Serbian mathe­
matician and astronomer Milutin Milankovitch, 
according to this ~echanism Pleistocene glacial cycles, 
were produced by variations of the solar radiation flux 
reaching our planet (Berger et al., 1984). The notion that 
these variations could be related to cyclic geometric 
changes in the earth's orbit began with J. Adhemar, in 
1842, who suggested that the main cause for the "ice 
ages'' could be variations in the direction of earth's orbital 
axis and, consequently, in insolation (Berger & Pestiaux, 
1984). 

Such theories usually assume that climate and the 
ecological systems in general have a linear response to the 
regular and periodic oscillatory behaviour of several Earth 
orbital parameters, i.e. the proxy data response from 
(palaeo )climate or (palaeo )oceanographic dynamics is 
more or less proportional to the magnitude of the orbitally 
induced periodic disturbance (lmbrie et al., 1984; Herterich 
& Sarnthein, 1984 ). This linear approach to Milankovitch 
theory will be referred to here as the ''Periodic behaviour 
model" (Cachao, 1992). 

The search for numerical solutions for the equa­
tions that rule our planetary system goes back to the first 
attempts of the French mathematician Pierre Simon de 
La place to solve an important issue: the Solar System's 
stability. By making some simplifications La place showed 
that his simplified system was integrable and that there 
where long-term (tens ofth<;msands of years) periodicities 
(Murray, 1992). 

The present day values for the periodic variations 
of the maximum solar energy that reaches our planet 
correspond to one of the trigonometric solutions of the 
Lagrangean equations for the planetary movements, which 
are (Berger, 1984): 

- 400 and 100 ka, periodicities associated with 
sinusoidal variations of the earth orbit eccentricity around 
the Sun; 

- 41 ka, a period related. to variations on Earth 
rotation axis obliquity; 

- 23 and 19 ka, both periods related to variations in 
the precession of the equinoxes. 

These values are only valid for an interval of time 

that goes back to -5 Ma (earliest Pliocene) due to inherent 
limitations to the calculations involved ( op. cit.) and to the 
existence of multiple disturbance factors such as solid 
tides, solar wind, and meteoritic showers (Buys & Ghil, 
1984 ). So several corrections have been introduced and 
new values proposed (e.g. Berger et al., 1989) for other 
time intervals. 

Milankovitch frequencies result from the nonlinear 
interference of the several gravitational forces involved in 
movement of our planetary system. The importance in 
recognising these frequencies in our time series data is 
obvious: it would increase our biostratigraphic resolution 
to a degree unthinkable a few years ago. But what does it 
strictly tell us about how the natural systems (climate, 
oceanic currents - the "conveyor belt" of Broecker & 
Denton, 1990)-, upwelling and the " El Nifio" events, 
population dynamics, ecological succession) work? Not 
much. In fact the linear approach to the Milankovitch 
model assumes that the environment is ''transparent'' or 
passive to the orbital frequency signals. But our everyday 
experience suggests the opposite. 

There are no natural dynamic systems that can be 
illustrated by a straight line, or in other words, natural 
processes are all nonlinear1

• By nonlinear we mean ''with 
feedback' ' and the full consequences of this are only now 
being understood through the application of Chaos 
Theory, since the first discoveries of Eduard Lorenz, a 
meteorologist from the Massachusetts Institute of Tech­
nology, in the early 1960s (Lorenz, 1963). 

The main purpose of this essay is to contribute to 
the development of an alternative model that may find 
room to explain, as a gestalt theory, not only data series 
with rhythmic patterns but also alternating processes 
without a strict periodicity. 

To discuss whether there is ''Milankovitch'' or not 
is a false problem. Orbital forcing has always been present 
as a pumping mechanism on Earth environment. Whethe.r 
its frequencies are stable or change to some degree, is 
another problem which will not be addressed here. What 
we should discuss is under what conditions should we 
expect to recognise these periodic signals in our data and 
in which conditions should we expect not to see them, and 
why? · 

An alternative approach 
The model, which is proposed as an alternative to the 
linear "Periodic behaviour model" , was designated as 
"Complex behaviour model" (Cachao, 1992). As Broecker 
& Denton wrote (1990) this "proposal is not a rejection 

1 -Although for some authors the system's response seems to behave ''nearly linearly'' in the 4 3 and 23-ka frequencie~'hnbrie ( 1992) 
• recently recognised that the I 00-ka cycle ''might either reflect an oscillation driven by non linear interactions occurring within 

the system itself [vide Self-periodic sector in Fig. 3 of this essay], or an interaction occurring between the system and the 
astronomically forced responses'' simply because the ''100,000-year cycle of radiation is much too small to be effective' ' ( op. 
cit. ). 
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Fig. 1: The ''Bifurcation diagram'': one-dimensional map of the recursive iteration of the simplified logistic equation. The ordinate X represents the size 
of a certain population which varies between 0 (extinction) and 1. X, is the initial population size. The abscissa r simulates variable reproduction rates. 
The larger r is more the iteration system deviates from "linearity". 

of the astronomical theory ... but an extension of it'' since 
it combines astronomical induced driving forces (i .e. 
Milankovitch theory) with aspects of nonlinear dynamics 
(i .e. Climate) particularly some recent developments of 
Chaos Theory. 

The proxy nature of the rnicropalaeontological 
data we gather has special characteristics since we are 
dealing with living entities with complex ecological and 
physiological responses to their surrounding environ­
ment. Although calcareous nannoplankton are 
phytoplanktonic, present day studies have demonstrated 
that they are not usually light limited (Margalef, ·1991). 
So, in our model the main Milankovitch influence will be 
centred on the increase/decrease of seasonality, related to 
stronger/weaker global temperature gradients which are 
directly (although nonlinearly) related to stronger cli~te 
induced turbulence (both oceanic - upwelling, and atmo­
spheric - storm disturbance). Ultimately this turbulence 
controls nutrient input in the system. We will leave for the 
moment the question of exactly how the surrounding 
palaeoceanographic environment is physically reacting to 
orbital forcing2

. 

As a paradigm of this model the Bifurcation Dia­
gram of the logistic equation in its canonical (simplified) 
formwillbeused(May, 1974, 1976; May&Oster, 1976) 
(Eq. 1) as an example for the several situations that this 
model assumes as possible to occur in natural systems. 

X, = r.X,_1 • (1-X,_.) (1) 
Where X is the hypothetical population size at a 

certain time interval t, and r is a constant that simulates 
their reproduction rate per unit of time interval. However 

it there is no assumption that natural systems are fully 
described by this or any other simplified equation, only 
that their behaviour, when iterated, may foHow its basic 
features. In other words: the logistic equation is used here 
not so much as a potential model for population growth in 
an environment oflirnited resources but as a suitable (and 
common) example of how nonlinear systems work. 

Even in this simplified version the logistic equa­
tion is a typical example of a nonlinear equation with a 
feedback mechanism, [the term (1 -X,) in Eq. 1], that 
prevents populations from growing indefinitely. Fig. 1 is 
a one-dimensional map of the recursive iteration of this 
simplified logistic equation which is known as the' 'Bifur­
cation diagram" . The recursive iteration of this equation 
is a mathematical procedure arguably analogous to a 
natural system in which the value of a given property at one 
time interval (X) is dependant on its value in the preceding 
time interval (X,). The sequence of values produced can 
thus be analogous to any time series data set, for instance 
from sequential core samples, in which a certain sample 
is related to the previous ones by a sequence of several 
(natural) processes, repeating themselves on and on (Fig. 2). 

Let's now assume that r (referred to above as the 
reproduction rate) modulates the increase in l! population 
size, after a certain time interval, due to the availability in 
nutrients. At a first glimpse we could consider that when 
r increases the size of the population also increases, more 
or less, proportionally. Well, this is true but only for a short 
interval of r values. 

Depending on the values of the parameter r a 
certain theoretical population (X) may converge to a 

2 - It is interesting to notice how recent models of the physical behaviour of certain palaeoceanographic Thatures such as the North 
Atlantic conveyor (its thermohaline circulation) considers a " stochastic or random forcing" component (e.g. magnitude of 
freshwater flux forcing) (Weaver & Hughes, 1994) with no linear direct response to orbital fr.rcing (obviously that there is a certain 
relationship since stronger seasonality due to Milankovitch cyclicity induces a stochastic hydrological cycle with larger standard 
deviation), mainly because changes in the conveyor circulation pattern have a much higher frequency and an unpredictable nature. 
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Fie. 2: Comparative diagram showing the similarity between the study of 
a sequential core sampling and the behaviour of a simple non-linear 
equation when we iterate it recursively. 

unique size value (quasi-linear sector of the diagram, 
where X is approximately proportional to r), may self­
oscillate between 2, 4 ,8, 16 ... distinct size values 
(self-periodic sector, where " sudden" bifurcations arise 
after which the population size, X, " oscillates" between 
extreme lower and upper values) or may never converge 
(aperiodic or chaotic sector, where the size of the popula­
tion loses predictability) (Fig. 1). By simply increasing r 
the behaviour of the population described by this simple 
equation diverges more and more from " linearity" . 

Possible palaeoecological - palaeoceanographic 
meanings of these three sectors are not yet fully under­
stood but some interpretations are possible: 

i) The quasi-linear sector represents the interval where the 
system reacts almost as a " transient" linear system, i.e. 
the outputs (X) are unique and almost proportional to the 
inputs (r). In this stage the system is quite robust since even 
after strong disturbances (a significative change in the 
initial size of the population) the system reacts in order to 
converge to the same final size value (Fig. 3). By other 
words strong ' 'anomalous' ' environmental disturbances, 
by their magnitude, can induce direct unpredictable re­
sponses in the organisms (e.g. abundance drops, blooms, 
para-acmes, etc.) although in this stage the system re­
sponds to reach the initial stable value (something that a 
typical linear system cannot perform) and by doing that it 
better reflects the overall conditions. The model predicts 
that when the system is "working" in this way it should 
be possible to recognize in it external (orbital) signals and 
to apply Milankovitch models (Imbrie et al. , 1992). This 
behaviour is expected to occur for sites located in oceanic 
domain (more or less stable central ocean gyres) and for 
oligotrophic phytoplankton groups that have lesser needs 
for nutrients (e.g. Discoasters in sites far away from 
coastal areas, Backman, 1986; Backman et al., 1987) 
since nutrient concentrations are more dependent on 
climate and turbulent transport; 
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Fie. 3: Logistic generated time series: quasi-linear behaviour. I - initial 
state; 2- behaviour after a strong disturbance (significant change in initial 
conditions). 

ii) The self-periodic sector shows how a nonlinear system 
may disclose a rhythmic pattern without any need for 
external (cyclic or not) forcing. In this stage the system 
shows some sensitivity to disturbance as can be seen in 
Fig. 4. In some cases after a change in initial conditions 
the system may return to the same behaviour (Fig. 4A) 
while in other situations the system may respond with a 
small or a large phase shift (Figs. 48 and 4C, respectively). 
It is possible that some cases of rhythmic patterns in time 
series (e.g. limestone-mar! or any other lithological coup­
let sequences) may result from this property of nonlinear 
systems. If so, instead of being a consequence of external 
orbital forcing they might correspond to an internal and 
also natural ''heart beat''. 'Tills could explain those cases 
when spectral analysis reveals non Milankovitch 's fre­
quenciesor cases where we have a quasi-periodic behaviour 
(evidenced by a torus structure- doughnut shaped - in 
phase space) due to interference between distinct frequen­
cies or disturbance of a spectral signal by defocus of a 
cyclic pattern (Fig. 4B and C) (see footnote) ; 

iii) in the chaotic or aperiodic sector the system is 
intransient, never converges and shows an extreme sensi­
tivity to initial conditions, the " Butterfly effect" of 
(Lorenz, 1964 ). In these conditions an undetectable change 
in the initial values (e.g. a shift of 0.02 arbitrary units) 
leads to an exponentially divergent situation after only a 
few iterations (Fig. 5). The system becomes unpredictable 
and several tests may be applied to determine the 
dimensionality of its attractors (in phase space) as a way 
to distinguish this chaotic system from a noisy time series. 
Computing Lyapunov exponents or running nonlinear 
predictability tests (Sugihara et al., 1990; Sugihara & 
May, 1990) are some of the other methods that can be 
used to demonstrate the real nature of apparently random 
(chaotic) time series. 

This last situation is expected to happen in time 
series retrieved from cores near continental areas where 
climate disturbances (run off) and upwellipg are quite 
frequent. Several workers. have already shown that both 
climate and turbulence have a typical chaotic behaviour 
and characteristic fractal properties (Mandelbrot, 1983; 
Margalef, 1991 ; Mullin, 1992; Palmer, 1992; Peixoto & 
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Fie. 4: Logistic generated time series: self-periodic behaviour. A- convergent behaviour, B- small shift of phase induced by-disturbance; C- significative 
shift of phase induced by disturbance. ··' 

Oort, 1992), of the same basic nature as the chaotic sector BifurcatiGil diagram in which some portions of the dia-
of the Fig. 1. In fact the scale invariant (self-similarity) gram (as for instance a small window in the vicinity of the 
property of fractals can also be illustrated by this same limit between the self-periodic and chaotic sectors), when 
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Fie. 5: Logistic generated time series: chaotic behaviour. After an "insignificant" disturbance of0.02 (arbitrary units) the system changes completely 
after only few iterations. This is know by the " butterfly effect" oc sensitivity to initial conditions which is one of the characteristics of the chaotic dynamics. 

enlarged, reproduce the same basic features of the whole 
diagram (Fig. 6-A). 

Also other properties of the Bifurcation diagram 
such as the "universality" (or the feigenvalue, the con­
stant ratio between the r values which occurs at two 
contiguous bifurcations) or the "windows of organi:za­
tion" (the white strips in the chaotic sector, short moments 
at which the system starts to reconverge, Fig. 6-B) may 
also be interpreted (probably not so easily) in terms of how 
natural (palaeo )systems (population dynamics or turbu­
lent motion) work (Stewart, 1990). 

So far we have discussed only a single population 
but studies made on multi-dimensional nonlinear systems 
show that the chaotic sector increases and appears 
''sooner'' than in the case shown in figure 1. 

It has been demonstrated that ' 'chaos does not rise 
because of noise in the system or. imprecision of measure­
ment. Instead it is an intrinsic feature of the physical 
[natural] system" (Crilly et al. , 1991). 

The "Complex behaviour model" as presented 
above does not aim to "explain" exactly how and when 
the system shifts from the periodic orbital signal (in some 
cases, like in the "Younger Dryas"l, we may be able to 
understand why, but when we go further in the past our 
chance of pin-pointing every one of these possible '' anoma­
lous'' cases is virtually impossible) but to try to understand, 
within a single framework (the nonlinear behaviour of the 
natural systems), several of the possible situations that 
might happen in the study of a time series proxy data. I 
believe Chaos theory and nonlinear dynamics applied to 
palaeoecology can help us to understand how even "sim­
ple'' ecological systems may reveal a rather complex 
pattern, which quite easily could be interpreted as noisy 
and simply filtered and tuned to a predetermined 
Milankovitch frequency signal. We may miss much if we 
use this last procedure, blindly, as a routine. 

I hope that this essay may lead to a general discus­
sion (perhaps in a workshop on palaeoecology -
palaeoceanography, in the next INA Conference) about 
the behaviour of natural systems, how they work and 
which are the best methods (for each possible case ) to 
study them. 
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